run_qiskit_aer
run_qiskit_aer (qcL, shots)
Run Qiskit Aer simulation
run_cudaqft
run_cudaqft (shots, num_gpus, num_qubit, nc=1, target='nvidia', verb=1)
Run CUDA-Q QFT circuits
input_shard
input_shard (bigD, myRank, numRank, verb=1)
Shard dataset across MPI ranks
run_gate_job
run_gate_job (exp:str, backend:str='nvidia', numshots:int=1024, basePath:str=None, qft:bool=False, target_option:str='fp32', verbosity:int=1)
*Run a gate list experiment.
Args: exp: Experiment name (without .gate_list.h5
) backend: Backend to use (‘nvidia’, ‘qiskit-cpu’, ‘tensornet’, ‘qpp-cpu’) numshots: Shots per circuit basePath: Base directory for input/output (or ‘env’ to use $Cudaq_dataVault) qft: If True, run QFT kernel instead of gate list target_option: Target options (default ‘fp32’) verbosity: Verbosity level (0-3)*
run_qcrank
run_qcrank (circ_name:str, inp_path:str='out', out_path:str='out', backend:str='nvidia', num_shot_per_addr:int=400, exp_name:str=None, verb:int=1)
*Run a QCrank simulation with CUDA-Q.
Args: circ_name: Circuit name without extension. inp_path: Path to input .qcrank_inp.h5 file. out_path: Directory for outputs. backend: CUDA-Q backend target. num_shot_per_addr: Shots per address. exp_name: Optional experiment name to override auto-generated job ID. verb: Verbosity level.*
run_cudaq
run_cudaq (gateD, shots, verb=1, backend='qpp-cpu')
Run CUDA-Q simulation for all circuits in gateD.
harvest_cudaq_backRun_submitMeta
harvest_cudaq_backRun_submitMeta (md, backend:str, exp_name:str=None)
Fill metadata with backend run info.
make_qcrank
make_qcrank (md, barrier=True)
Create a parameterized QCrank circuit object.
canned_qcrank_inp
canned_qcrank_inp (inp_path:str, circ_name:str, num_shot_per_addr:int)
Load prepacked QCrank HDF5 input and update metadata with shot count.
rank_print
rank_print (*args, **kwargs)
Simplified rank_print (no MPI), always prints.